Now let's find new coordinates in another basis

Report a typo

Consider two bases from a vector space R3\mathbb{R}^3: e1=(1,1,1)e_1 = (1, -1, 1), e2=(1,1,1)e_2 = (-1,-1,1), e3=(1,0,2)e_3 =(-1, 0, 2) and e1=(2,1,1)e'_1 = (-2, -1, -1), e2=(1,0,2)e'_2 = (1, 0, 2), e3=(1,3,3)e'_3 =(1, -3, 3). Suppose we also know, that the coordinates of a vector ww in basis e\mathbf{e}

are (163)\begin{pmatrix} -1\\ -6 \\ 3\end{pmatrix}. What coordinates does the vector ww have in the basis e\mathbf{e'}?

In the answer, write the coordinates in the following form: if you have, for example, a vector (12 3)\begin{pmatrix} 1 \\ 2\ \\3 \end{pmatrix}, then write 1 2 3.

Tip: Matrix inverse to the transition matrix from e\mathbf{e} to e\mathbf{e'} is C1=(0.511.50.512.50.500.5).C^{-1} = \begin{pmatrix} -0.5 & 1 & 1.5\\ -0.5& 1 & 2.5 \\ 0.5 & 0 & -0.5 \end{pmatrix}.

Enter a short text
___

Create a free account to access the full topic