Coordinates of a vector

Report a typo

Suppose we have two bases from a vector space R3\mathbb{R}^3: e1=(1,1,1)e_1 = (1, 1, 1), e2=(1,1,0)e_2 = (-1, 1, 0), e3=(2,2,2)e_3 =( 2, -2, -2) and e1=(3,3,2)e'_1 = (3, -3, -2), e2=(3,1,2)e'_2 = (3, 1, -2), e3=(1,3,0)e'_3 =( 1, 3, 0), and the transition matrix from e\mathbf{e} to e\mathbf{e'} is (022133121)\begin{pmatrix} 0 & 2 & 2\\ -1 & 3 & 3\\ 1 & 2 & 1 \end{pmatrix}. The coordinates of a vector vv in basis e\mathbf{e}

are (445)\begin{pmatrix} -4 \\ -4 \\ -5 \end{pmatrix}. What coordinates does the vector vv have in the basis e\mathbf{e'}?

The options are:

1) (211)\begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix};

2) (182317)\begin{pmatrix} -18\\ -23 \\ -17 \end{pmatrix};

3) This is not a transition matrix from e\mathbf{e} to e\mathbf{e'};

4) (445);\begin{pmatrix} -4 \\ -4 \\ -5 \end{pmatrix};

Tip: Matrix inverse to the transition matrix from e\mathbf{e} to e\mathbf{e'} is C1=(1.5102112.511).C^{-1} = \begin{pmatrix} 1.5 & -1 & 0 \\ -2 & 1 & 1 \\ 2.5 & -1 & -1 \end{pmatrix}.

Select one option from the list
___

Create a free account to access the full topic