Find a transition matrix

Report a typo

Suppose we have two bases in R3\mathbb{R}^3: e1=(1,1,1)e_1 = (1, -1, 1), e2=(1,1,1)e_2 = (-1, -1, 1), e3=(1,0,2)e_3 =( -1, 0, 2) and e1=(2,1,1)e'_1 = (-2, -1, -1), e2=(1,0,2)e'_2 = (1, 0, 2), e3=(1,3,3)e'_3 =( 1, -3, 3). Which of the following matrixes is a transition matrix from e\mathbf{e} to e\mathbf{e'}?

1) (111110112);\begin{pmatrix} 1 & -1 & -1 \\ -1 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix};

2) (211103123);\begin{pmatrix} -2 & 1 & 1 \\ -1 & 0& -3 \\ -1 & 2 & 3 \end{pmatrix};

3) (112211110);\begin{pmatrix} -1 & 1 & 2 \\ 2 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix};

4) These are not bases.

Select one option from the list
___

Create a free account to access the full topic