Now let's find new coordinates

Report a typo

Consider two bases from a vector space R3\mathbb{R}^3: e1=(1,1,1)e_1 = (1, 1, 1), e2=(1,1,0)e_2 = (-1,1, 0), e3=(2,2,2)e_3 =( 2, -2, -2) and e1=(3,3,2)e'_1 = (3, -3, -2), e2=(3,1,2)e'_2 = (3, 1, -2), e3=(1,3,0)e'_3 =(1, 3, 0). Suppose we also know that the coordinates of a vector vv in basis e\mathbf{e'}

are (111)\begin{pmatrix} -1\\ 1 \\ 1\end{pmatrix}. What coordinates does the vector vv have in the basis e\mathbf{e}?

In the answer, write the coordinates in the following form: if you have, for example, a vector (12 3)\begin{pmatrix} 1 \\ 2\ \\3 \end{pmatrix}, then write 123\begin{matrix} 1 \\ 2 \\ 3 \end{matrix}.

Note: The transition matrix from e\mathbf{e} to e\mathbf{e'} is C=(022133121).C = \begin{pmatrix} 0 & 2 & 2 \\ -1 & 3 & 3 \\1 & 2 & 1 \end{pmatrix}.

Enter a short text
___

Create a free account to access the full topic