Angle rotation operator

Report a typo

Consider a linear operator A\mathcal{A} that rotates each vector of the plane around the origin by the angle π6\dfrac{\pi}{6} (counter clockwise). What is the matrix of this operator?

1) (3212  1232);\begin{pmatrix} \dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\ \ & \ \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \end{pmatrix};

2) (3212  1232);\begin{pmatrix} \dfrac{\sqrt{3}}{2} & - \dfrac{1}{2} \\ \ & \ \\ \dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \end{pmatrix};

3) (1232  3212);\begin{pmatrix} \dfrac{1}{2} & - \dfrac{\sqrt{3}}{2} \\ \ & \ \\ \dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \end{pmatrix};

4) This is not a linear operator.

Select one option from the list
___

Create a free account to access the full topic