Double rotation

Report a typo

The problem might be tricky. To solve it, you need to be familiar with trigonometric functions.

Let Aφ\mathcal{A_{\varphi}} be rotation operator that rotates the plane by an angle φ\varphi. Here's the matrix of Aφ\mathcal{A_{\varphi}} in the standard basis, e1=(1,0)e_1 = (1, 0), e2=(0,1)e_2 = (0, 1):
A=(cosφsinφsinφcosφ).A = \begin{pmatrix} \cos \varphi & - \sin\varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.

What is the matrix of the operator AφAψ\mathcal{A}_\varphi\mathcal{A}_{\psi} (the operator that applies Aψ\mathcal{A}_\psi first and Aφ\mathcal{A}_\varphi second)?

Select one option from the list
___

Create a free account to access the full topic