MathAlgebraLinear algebraMatrix decomposition

Pseudoinverse

Getting the pseudoinverse

Report a typo

The SVD of the matrix:A=(021120)A= \begin{pmatrix} 0 & 2 \\ 1 & 1 \\ -2 & 0 \\ \end{pmatrix}is given by:U=(13121613023131216)Σ=(600200)V=12(1111)U = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \sqrt{\frac{2}{3}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix} \qquad \Sigma= \begin{pmatrix} \sqrt{6} & 0 \\ 0 & 2 \\ 0 & 0 \end{pmatrix} \qquad V=\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ \end{pmatrix}Calculate the pseudoinverse of AA.

Select one option from the list
___

Create a free account to access the full topic