Algebraic manipulations with basis vectors

Report a typo

Knowing that e1=(1000)T\vec{e}_{1} = \begin{pmatrix}1&0&0&0\end{pmatrix}^{\mathsf{T}}, e2=(0100)T\vec{e}_{2} = \begin{pmatrix}0&1&0&0\end{pmatrix}^{\mathsf{T}}, e3=(0010)T\vec{e}_{3} = \begin{pmatrix}0&0&1&0\end{pmatrix}^{\mathsf{T}}, e4=(0001)T\vec{e}_{4} = \begin{pmatrix}0&0&0&1\end{pmatrix}^{\mathsf{T}}, find the following scalar product(12e2e1+e4)(e316e2e4+2e1)\left(-12\vec{e}_{2} - \vec{e}_{1} + \vec{e}_{4}\right)\cdot\left(\vec{e}_{3} - \frac{1}{6}\vec{e}_{2} - \vec{e}_{4} + 2\vec{e}_{1}\right)

Enter a number
___

Create a free account to access the full topic