Which of these limits can be computed by reducing the fraction?
1) limx→−2(3x+6)⋅limx→−23x+2\lim\limits_{x\to-2} (3x+6) \cdot \lim\limits_{x\to-2} \dfrac{3}{x+2}x→−2lim(3x+6)⋅x→−2limx+23
2) limx→−23x+6x+2\lim\limits_{x\to-2} \dfrac{3x+6}{x+2}x→−2limx+23x+6
3)limx→−2(x+2)limx→−2(3x+6)\dfrac{\lim\limits_{x\to-2} (x+2)}{\lim\limits_{x\to-2} (3x+6)}x→−2lim(3x+6)x→−2lim(x+2)
Create a free account to access the full topic