2 minutes read

We already know the function limit. In this topic, we will learn what operations we can perform with it.

Operations with limits

Suppose we have two functions f(x)f(x) and g(x)g(x), and two limits limxaf(x)\lim\limits_{x \to a} f(x) and limxag(x)\lim\limits_{x \to a} g(x)

Then we can perform the following operations with limits:

1) Add

limxaf(x)+limxag(x)=limxa(f(x)+g(x))\lim\limits_{x \to a}f(x) + \lim\limits_{x \to a}g(x)=\lim\limits_{x \to a}( f(x) + g(x) )2) Subtract

limxaf(x)limxag(x)=limxa(f(x)g(x))\lim\limits_{x \to a}f(x) -\lim\limits_{x \to a}g(x)=\lim\limits_{x \to a}( f(x) - g(x) )3) Multiply

limxaf(x)limxag(x)=limxa(f(x)g(x))\lim\limits_{x \to a}f(x) \cdot\lim\limits_{x \to a}g(x)=\lim\limits_{x \to a}( f(x) \cdot g(x) )4) If limxag(x)0\lim\limits_{x \to a} g(x) \ne 0, we can divide limxaf(x)\lim\limits_{x \to a} f(x) by limxag(x)\lim\limits_{x \to a} g(x)

limxaf(x)limxag(x)=limxaf(x)g(x)\dfrac{\lim\limits_{x \to a} f(x)}{\lim\limits_{x \to a} g(x)}=\lim\limits_{x \to a} \dfrac{f(x)}{g(x)}5) Multiply by a constant ccclimxaf(x)=limxa(cf(x))c \cdot \lim\limits_{x \to a}f(x)=\lim\limits_{x \to a} (c \cdot f(x))6) Raise to a positive integer power nn

(limxaf(x))n=limxa(f(x))n(\lim\limits_{x \to a} f(x))^n=\lim\limits_{x \to a} (f(x))^n

7) Extract nnth root, where nn is a positive integer

limxaf(x)n=limxaf(x)n\sqrt[n]{\lim\limits_{x \to a}f(x)}=\lim\limits_{x \to a} \sqrt[n]{f(x)}

Example

Let's do some practice and find the limit limx1x43x2+14x\lim\limits_{x \to 1} \dfrac{x^4 -3x^2+1}{4-x}We use the rules that we've considered above:

limx1x43x2+14x=limx1(x43x2+1)limx1(4x)=limx1x43limx1x2+limx11limx14limx1x= =14312+141=13\lim\limits_{x \to 1} \dfrac{x^4 -3x^2+1}{4-x} = \dfrac{\lim\limits_{x \to 1} (x^4 -3x^2+1)}{\lim\limits_{x \to 1} (4-x)} = \dfrac{\lim\limits_{x \to 1} x^4 -3\lim\limits_{x \to 1} x^2 + \lim\limits_{x \to 1} 1}{\lim\limits_{x \to 1} 4-\lim\limits_{x \to 1} x} = \\ \ \\ =\dfrac{1^4-3 \cdot 1^2+1}{4-1} = - \dfrac{1}{3}

Conclusion

In this topic, we learned about operations with limits. If the limits of functions f(x)f(x) and g(x)g(x) both exist, then we can add these limits, subtract, multiply and divide (provided that the denominator is not 00), multiply by a constant, or raise to a power. These operations are very helpful in calculating all sorts of limits.

50 learners liked this piece of theory. 0 didn't like it. What about you?
Report a typo