2 minutes read

We already know the function limit. In this topic, we will learn what operations we can perform with it.

Operations with limits

Suppose we have two functions f(x)f(x) and g(x)g(x), and two limits limโกxโ†’af(x)\lim\limits_{x \to a} f(x) and limโกxโ†’ag(x)\lim\limits_{x \to a} g(x)

Then we can perform the following operations with limits:

1) Add

limโกxโ†’af(x)+limโกxโ†’ag(x)=limโกxโ†’a(f(x)+g(x))\lim\limits_{x \to a}f(x) + \lim\limits_{x \to a}g(x)=\lim\limits_{x \to a}( f(x) + g(x) )2) Subtract

limโกxโ†’af(x)โˆ’limโกxโ†’ag(x)=limโกxโ†’a(f(x)โˆ’g(x))\lim\limits_{x \to a}f(x) -\lim\limits_{x \to a}g(x)=\lim\limits_{x \to a}( f(x) - g(x) )3) Multiply

limโกxโ†’af(x)โ‹…limโกxโ†’ag(x)=limโกxโ†’a(f(x)โ‹…g(x))\lim\limits_{x \to a}f(x) \cdot\lim\limits_{x \to a}g(x)=\lim\limits_{x \to a}( f(x) \cdot g(x) )4) If limโกxโ†’ag(x)โ‰ 0\lim\limits_{x \to a} g(x) \ne 0, we can divide limโกxโ†’af(x)\lim\limits_{x \to a} f(x) by limโกxโ†’ag(x)\lim\limits_{x \to a} g(x)

limโกxโ†’af(x)limโกxโ†’ag(x)=limโกxโ†’af(x)g(x)\dfrac{\lim\limits_{x \to a} f(x)}{\lim\limits_{x \to a} g(x)}=\lim\limits_{x \to a} \dfrac{f(x)}{g(x)}5) Multiply by a constant cccโ‹…limโกxโ†’af(x)=limโกxโ†’a(cโ‹…f(x))c \cdot \lim\limits_{x \to a}f(x)=\lim\limits_{x \to a} (c \cdot f(x))6) Raise to a positive integer power nn

(limโกxโ†’af(x))n=limโกxโ†’a(f(x))n(\lim\limits_{x \to a} f(x))^n=\lim\limits_{x \to a} (f(x))^n

7) Extract nnth root, where nn is a positive integer

limโกxโ†’af(x)n=limโกxโ†’af(x)n\sqrt[n]{\lim\limits_{x \to a}f(x)}=\lim\limits_{x \to a} \sqrt[n]{f(x)}

Example

Let's do some practice and find the limit limโกxโ†’1x4โˆ’3x2+14โˆ’x\lim\limits_{x \to 1} \dfrac{x^4 -3x^2+1}{4-x}We use the rules that we've considered above:

limโกxโ†’1x4โˆ’3x2+14โˆ’x=limโกxโ†’1(x4โˆ’3x2+1)limโกxโ†’1(4โˆ’x)=limโกxโ†’1x4โˆ’3limโกxโ†’1x2+limโกxโ†’11limโกxโ†’14โˆ’limโกxโ†’1x= =14โˆ’3โ‹…12+14โˆ’1=โˆ’13\lim\limits_{x \to 1} \dfrac{x^4 -3x^2+1}{4-x} = \dfrac{\lim\limits_{x \to 1} (x^4 -3x^2+1)}{\lim\limits_{x \to 1} (4-x)} = \dfrac{\lim\limits_{x \to 1} x^4 -3\lim\limits_{x \to 1} x^2 + \lim\limits_{x \to 1} 1}{\lim\limits_{x \to 1} 4-\lim\limits_{x \to 1} x} = \\ \ \\ =\dfrac{1^4-3 \cdot 1^2+1}{4-1} = - \dfrac{1}{3}

Conclusion

In this topic, we learned about operations with limits. If the limits of functions f(x)f(x) and g(x)g(x) both exist, then we can add these limits, subtract, multiply and divide (provided that the denominator is not 00), multiply by a constant, or raise to a power. These operations are very helpful in calculating all sorts of limits.

50 learners liked this piece of theory. 0 didn't like it. What about you?
Report a typo