Old Balance sneakers

Report a typo

A shoemaking company "Old Balance Shoe" makes both sports and classic sneakers. It can produce 5000 sports and 3500 classic sneakers per day. The company makes a profit of $120\$120 on sports sneakers and a profit of $180\$180 on classic sneakers. The supply of leather is sufficient to produce at most 6500 sneakers per day. Let x1x_1 and x2x_2 represent the units of sports and classic sneakers that should be produced.

Select the correctly formulated linear program for this problem.

A.Maximize z=120x1+180x2s.t.:x1+x2<6500x1=5000x2=3500A.\\ Maximize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 < 6500 \\ x_1 = 5000 \\ x_2 = 3500

B.Maximize z=120x1+180x2s.t.:x1+x2>6500x1<5000x2>3500B.\\ Maximize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 > 6500 \\ x_1 < 5000 \\ x_2 > 3500

C.Maximize z=120x1+180x2s.t.:x1+x26500x2<3500x20C.\\ Maximize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 \le 6500 \\ x_2< 3500 \\ x_2 \ge 0

D.Maximize z=120x1+180x2s.t.:x1+x26500x2,x20D.\\ Maximize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 \le 6500 \\ x_2, x_2 \ge 0

E.Minimize z=120x1+180x2s.t.:x1+x26500x2,x20E.\\ Minimize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 \ge 6500 \\ x_2, x_2 \ge 0

F.Maximize z=120x1+180x2s.t.:x1+x26500x1<5000x2<3500x1,x20F.\\ Maximize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 \ge 6500 \\ x_1 <5000\\ x_2 < 3500 \\ x_1, x_2 \ge 0

G.Maximize z=120x1+180x2s.t.:x1+x26500x15000x23500x1,x20G.\\ Maximize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 \ge 6500 \\ x_1 \le5000\\ x_2 \le 3500 \\ x_1, x_2 \le 0

H.Maximize z=120x1+180x2s.t.:x1+x26500x15000x23500x1,x20H.\\ Maximize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 \ge 6500 \\ x_1 \ge5000\\ x_2 \ge 3500 \\ x_1, x_2 \le 0

I.Maximize z=120x1+180x2s.t.:x1+x26500x15000x23500x1,x20I.\\ Maximize \ z = 120x_1 + 180x_2 \\ s.t.: \\x_1 + x_2 \ge 6500 \\ x_1 \ge5000\\ x_2 \ge 3500 \\ x_1, x_2 \ge 0

Select one or more options from the list
___

Create a free account to access the full topic