MathAlgebraLinear algebraLinear operators

Introduction to linear operators

A linear operator or not

Report a typo

Consider a vector space Mat2(R) \text{Mat}_2(\mathbb{R}) \ - a vector space of 2×22 \times 2-matrices with real coefficients. Suppose we have a mapping A ⁣:Mat2(R)Mat2(R)\mathcal{A} \colon \text{Mat}_2(\mathbb{R}) \to \text{Mat}_2(\mathbb{R}), which is defined by the following rule: for any matrix XMat2(R)X \in\text{Mat}_2(\mathbb{R})

A(X)=(1102)X(2103)+X.\mathcal{A}(X) = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} \cdot X \cdot \begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} + X.Is A\mathcal{A} a linear operator?

Select one option from the list
___

Create a free account to access the full topic