MathAlgebraLinear algebraMatrix decomposition

SVD in action

Inverting a matrix

Report a typo

Take the next square matrix:

A=(1331)A=\left( \begin{array}{cc} -1 & 3 \\ 3 & -1 \\ \end{array} \right)It has the following SVD:

U=12(1111)Σ=(4002)V=12(1111)U = \frac{1}{\sqrt{2}} \left( \begin{array}{cc} 1 & 1 \\ -1 & 1 \\ \end{array} \right) \qquad \Sigma = \left( \begin{array}{cc} 4 & 0 \\ 0 & 2 \\ \end{array} \right) \qquad V= \frac{1}{\sqrt{2}} \left( \begin{array}{cc} -1 & 1 \\ 1 & 1 \\ \end{array} \right)Use this information to get A1A^{-1}. Enter the entries of 8A18 A^{-1} in the following format:

0 0
0 0
Enter a short text
___

Create a free account to access the full topic