13 minutes read

The process of finding antiderivatives can feel a bit frightening as integrands become more complicated. For instance, consider the following integral:

I=x3x2+2x1 dxI = \int \frac{x}{\sqrt{3x^2 + 2x - 1}} \ dxHow to solve it? You can use integration by parts or u-substitution after doing some algebraic manipulation. However, these methods can be inefficient because of their trial-and-error nature. Fortunately, there are techniques to identify and solve indefinite integrals like this one with less guesswork.

In this topic, you'll take a look at the Trigonometric substitution technique and how it can help solve integrals with integrands that contain rational functions with quadratic trinomial functions.

Rational quadratic trinomials

Before describing the actual technique, let's take a look at a few expressions:

1x22x+5 ,1xx2+5x6 ,xx2+4 ,x(x1)x21\frac{1}{x^2 - 2x + 5} \ ,\quad \frac{1}{x \cdot \sqrt{-x^2 + 5x - 6}} \ , \quad x \sqrt{x^2+4} \ , \quad \frac{x}{(x-1) \cdot \sqrt{x^2 - 1}}All of them have the following elements in common: they can all be expressed as rational functions, R(x)=P(x)Q(x)R(x) = \frac{P(x)}{Q(x)}; they contain a quadratic trinomial factor: ax2+bx+c\ ax^2 + bx + c; and they may contain a function of xx as another factor.

As such, all the expressions from the beginning can be represented as follows:

R(x,ax2+bx+c)orR(x,ax2+bx+c)R(x, ax^2 +bx +c) \quad \text{or} \quad R\left(x, \sqrt{ax^2 +bx +c}\right)

These rational functions that contain quadratic trinomials have a special relationship with trigonometric functions. It can be described in two facts:

  1. Completing the square allows you to convert expressions of the form ax2+bx+cax^2+bx+c to any of the three forms:

    • 1+g2(x)1+g^2(x)

    • 1g2(x)1-g^2(x), or

    • g2(x)1g^2(x) - 1

  2. Substituting g(x)g(x) for the right trigonometric function allows you to make use of well-known trigonometric identities:

    • sec2(x)=1+tan2(x)\sec^2(x) = 1 + \tan^2(x)

    • cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x), and

    • tan2(x)=sec2(x)1\tan^2(x) = \sec^2(x) - 1

Now, when dealing with integrands of the form:

R(x,ax2+bx+c) dxorR(x,ax2+bx+c) dx\int R(x, ax^2 +bx +c) \ dx \quad \text{or} \quad \int R\left(x, \sqrt{ax^2 +bx +c}\right) \ dxAnother helpful fact:

  • taking the derivative of the trigonometric functions on one side of the identities mentioned in (2) results in expressions that include functions from the other side of the equation. This can potentially lead to canceling factors after a change of variables.

An example

Let's consider the integral from before:

I=x3x2+2x1 dxI = \int \frac{x}{\sqrt{3x^2 + 2x - 1}} \ dxFirst, let's complete the square for the argument of the radical function in the denominator,

3x2+2x1=3(x2+23x13)    3x2+2x1=43((3x+12)21)\begin{align*} 3x^2 + 2x -1 = 3 \cdot \left( x^2 + \frac{2}{3}x - \frac{1}{3} \right) \implies 3x^2 + 2x -1 &= \frac{4}{3} \cdot \left(\left( \frac{3x+1}{2} \right)^2 - 1 \right) \end{align*}

You should be able to see how

g2(x)1=(3x+12)21ifg(x)=3x+12g^2(x) - 1 = \left( \frac{3x+1}{2} \right) ^2 - 1 \quad \text{if} \quad g(x) = \frac{3x+1}{2}

Then, let's define the following substitution:

3x+12=sec(θ)\frac{3x+1}{2} = \sec(\theta)And solve for xx to find dxdx,

x=2sec(θ)13    dx=23sec(θ)tan(θ) dθx =\frac{2 \sec(\theta) - 1}{3} \implies dx = \frac{2}{3} \sec(\theta) \tan(\theta) \ d\thetaNow, let's perform the change of variables by substituting our new expressions in the original integral,

I=x3x2+2x1 dx=x43((3x+12)21) dx    I=13(2sec(θ)1)43(sec2(θ)1)23sec(θ)tan(θ) dθI = \int \frac{x}{\sqrt{3x^2 + 2x - 1}} \ dx = \int \frac{x}{\sqrt{\frac{4}{3} \cdot \left(\left( \frac{3x+1}{2} \right)^2 - 1 \right)}} \ dx \implies I = \int \frac{\frac{1}{3} \cdot (2 \sec(\theta) - 1)}{\sqrt{\frac{4}{3} \cdot \left(\sec^2(\theta) - 1 \right) }} \cdot \frac{2}{3} \cdot \sec(\theta) \cdot \tan(\theta) \ d\theta. Simplifying,

I=13(2sec(θ)1)43(sec2(θ)1)2313sec(θ)tan(θ) dθ=1332sec(θ)1sec2(θ)1sec(θ)tan(θ) dθ=1332sec(θ)1tan2(θ)sec(θ)tan(θ) dθ=133(2sec2(θ)sec(θ)) dθI=233sec2(θ) dθ133sec(θ) dθ\begin{align*} I &= \int \frac{\frac{1}{3} \cdot (2 \sec(\theta) - 1)}{\sqrt{ \frac{4}{3} \cdot \left(\sec^2(\theta) - 1 \right) }} \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} \cdot \sec(\theta) \cdot \tan(\theta) \ d\theta \\ \\ &= \frac{1}{3\sqrt{3}} \int \frac{2 \sec(\theta) - 1}{\sqrt{\sec^2(\theta) - 1 }} \cdot \sec(\theta) \cdot \tan(\theta) \ d\theta \\ \\ &= \frac{1}{3\sqrt{3}} \int \frac{2 \sec(\theta) - 1}{\cancel{\sqrt{\tan^2(\theta) }}} \cdot \sec(\theta) \cdot \cancel{\tan(\theta)} \ d\theta = \frac{1}{3\sqrt{3}} \int \left(2 \sec^2(\theta) - \sec(\theta)\right) \ d\theta \\ \\ I & = \frac{2}{3\sqrt{3}} \int \sec^2(\theta) \ d\theta - \frac{1}{3\sqrt{3}} \int \sec(\theta) \ d\theta \end{align*}

[ALERT]The tan2(θ)\sqrt{\tan^2(\theta)} factor in the denominator canceled out one of the factors in the numerator, simplifying the integrand expression as a whole.[/ALERT]

From previous topics, you should already know the antiderivatives for these two integrals you are left with:I=233sec2(θ) dθ133sec(θ) dθ=233tan(θ)133lntan(θ)+sec(θ)+CI = \frac{2}{3\sqrt{3}} \int \sec^2(\theta) \ d\theta - \frac{1}{3\sqrt{3}} \int \sec(\theta) \ d\theta = \frac{2}{3\sqrt{3}} \tan(\theta) - \frac{1}{3\sqrt{3}} \ln| \tan(\theta) + \sec(\theta) | + CThe change of variables still needs to be reversed, but first let's recap on the technique.

Trigonometric substitution

The Trigonometric substitution technique can be summarized as follows:

  • Complete the square to reach any of the following expressions

a)1+g2(x)a) \quad 1+g^2(x)

b)1g2(x)b) \quad 1-g^2(x)

c)g2(x)1c) \quad g^2(x) - 1

  • Depending on the form of the resulting expression, substitute g(x)g(x) with the correct trig function:

1)1+g2(x)andg(x)=tan(θ)    1+tan2(θ)=sec2(θ)1) \quad 1+g^2(x) \quad \text{and} \quad g(x) = \tan(\theta) \implies 1+ \tan^2(\theta) = \sec^2(\theta)
2)1g2(x)andg(x)=sin(θ)    1sin2(θ)=cos2(θ)2) \quad 1-g^2(x) \quad \text{and} \quad g(x) = \sin(\theta) \implies 1 - \sin^2(\theta) = \cos^2(\theta)
3)1g2(x)andg(x)=cos(θ)    1cos2(θ)=sin2(θ)3) \quad 1-g^2(x) \quad \text{and} \quad g(x) = \cos(\theta) \implies 1 - \cos^2(\theta) = \sin^2(\theta)
4)g2(x)1andg(x)=sec(θ)    sec2(θ)1=tan2(θ)4) \quad g^2(x) - 1 \quad \text{and} \quad g(x) = \sec(\theta) \implies \sec^2(\theta) - 1 = \tan^2(\theta)

  • Solve for xx and determine dxdx as a function of θ\theta

  • Simplify and solve easier integrals

  • Reverse all changes of variable

Reversing changes of variable

In order to reverse the change of variable from θ\theta back to xx, construct a right triangle:

Right triangle

If aa, bb, and cc can be expressed as functions of xx; any of the six fundamental trigonometric functions can be expressed as a function of xx as well, based on their right-angled triangle definition:

sin(θ)=bc\sin(\theta) = \frac{b}{c}

csc(θ)=cb\csc(\theta) = \frac{c}{b}

cos(θ)=ac\cos(\theta) = \frac{a}{c}

sec(θ)=ca\sec(\theta) = \frac{c}{a}

tan(θ)=ba\tan(\theta) = \frac{b}{a}

cot(θ)=ab\cot(\theta) = \frac{a}{b}

Let's resume the previous example:

I=x3x2+2x1 dx    I=233tan(θ)133lntan(θ)+sec(θ)+C\begin{align*} I = \int \frac{x}{\sqrt{3x^2 + 2x - 1}} \ dx \implies I &= \frac{2}{3\sqrt{3}} \tan(\theta) - \frac{1}{3\sqrt{3}} \ln| \tan(\theta) + \sec(\theta) | + C \end{align*}

From the original change of variables, you know that

3x+12=sec(θ)\frac{3x+1}{2} = \sec(\theta)

From the right-triangle definition of the secant function, you should know also that

sec(θ)=hypotenuseadjacent side=ca\sec(\theta) = \frac{\text{hypotenuse}}{\text{adjacent side}} = \frac{c}{a}

Let's define aa and cc as follows:

sec(θ)=3x+12    {c=3x+1a=2\sec(\theta) = \frac{3x+1}{2} \implies \begin{cases} c = 3x+1 \\ a = 2 \end{cases}

With a little help from Pythagoras' theorem, bb can be found

a2+b2=c2    (2)2+b2=(3x+1)2    b=(3x+1)24a^2 + b^2 = c^2 \implies (2)^2 + b^2 = (3x+1)^2 \implies b = \sqrt{ (3x+1)^2 - 4}Thus, the length of all sides of the triangle can be defined like so

Right-angled triangle as geometric construction

Therefore:

sec(θ)=3x+12tan(θ)=(3x+1)242=323x2+2x1\begin{align*} &\sec(\theta) = \frac{3x+1}{2} \\ &\tan(\theta) = \frac{\sqrt{(3x+1)^2 - 4}}{2} = \frac{\sqrt{3}}{2} \cdot \sqrt{3x^2+2x-1} \end{align*}

Substituting our newfound expressions:

I=233tan(θ)133lntan(θ)+sec(θ)+CI=233(323x2+2x1)133ln(323x2+2x1)+3x+12+C\begin{align*} I &= \frac{2}{3\sqrt{3}} \tan(\theta) - \frac{1}{3\sqrt{3}} \ln| \tan(\theta) + \sec(\theta) | + C \\ I &= \frac{2}{3\sqrt{3}} \left( \frac{\sqrt{3}}{2} \cdot \sqrt{3x^2+2x-1} \right) - \frac{1}{3\sqrt{3}} \ln \left| \left( \frac{\sqrt{3}}{2} \cdot \sqrt{3x^2+2x-1} \right) + \frac{3x+1}{2} \right| + C \end{align*}

Finally,

I=x3x2+2x1 dx=3x2+2x13133ln9x2+6x3+3x+12+CI =\int \frac{x}{\sqrt{3x^2 + 2x - 1}} \ dx = \frac{\sqrt{3x^2+2x-1}}{3} - \frac{1}{3\sqrt{3}} \ln \left| \frac{\sqrt{9x^2+6x-3}+3x+1}{2} \right| + C

Conclusion

In this topic, you have learned about the trigonometric substitution integration method, which can be summarized as follows:

  • First, complete the square if necessary.

  • Perform the appropriate trigonometric substitution:

Expression after completing the square

Trigonometric function substitution

1+g2(x)1+g^2(x)

g(x)=tan(θ)g(x) = \tan(\theta)

1g2(x)1-g^2(x)

g(x)=sin(θ)  or  cos(θ)g(x) = \sin(\theta) \ \text{ or } \ \cos(\theta)

g2(x)1g^2(x) - 1

g(x)=sec(θ)g(x) = \sec(\theta)

  • Solve an easier integral!

R(x, ax2+bx+c)dx  or R(x,ax2+bx+c)dx=P(x)Q(x)dx    U(θ)V(θ)V(θ)dθ=U(θ)dθ\int R(x, \ \sqrt{ax^2 + bx + c}) dx \ \ \text{or} \ \int R(x, ax^2 + bx + c) dx = \int \frac{P(x)}{Q(x)} dx \implies\int \frac{U(\theta)}{\cancel{V(\theta)}} \cdot \cancel{V(\theta)} d\theta = \int U(\theta) d\theta

  • Finally, reverse a change of variables.

In addition to looking for the three main substitution cases, you have learned how to use Pythagoras' triangle to perform a change of variables for functions involving trigonometric expressions.

3 learners liked this piece of theory. 0 didn't like it. What about you?
Report a typo