Which of the following is a solution to III?
I=∫1−sin(x)(sec(x)−tan(x))2dxI = \int \frac{1 - \sin(x)}{(\sec(x) - \tan(x))^2} dxI=∫(sec(x)−tan(x))21−sin(x)dxTip:
sec(x)−tan(x)=1−sin(x)cos(x)\sec(x) - \tan(x) = \frac{1-\sin(x)}{\cos(x)}sec(x)−tan(x)=cos(x)1−sin(x) and cos2(x)=1−sin2(x)=(1−sin(x))(1+sin(x))\cos^2(x) = 1 - \sin^2(x) = (1-\sin(x)) (1 + \sin(x))cos2(x)=1−sin2(x)=(1−sin(x))(1+sin(x))
Create a free account to access the full topic