Rock-paper-scissors

Report a typo

Let's represent the outcomes of the rock-paper-scissors game in the form of a table (in other words, a matrix). The rows of the table correspond to the possible moves of the first player, and the columns correspond the possible moves of the second player:

Second playerFirst player Rock  Paper  Scissors Rock011Paper101Scissors110\begin {array} {c c r} & \text{Second player}\\ \text{First player} & \begin{array}{|c | c | c | c|} \hline & \text{ Rock } & \text{ Paper } & \text{ Scissors } \\\hline \text{Rock}\quad & 0 & -1 & 1 \\\hline \text{Paper}\quad & 1 & 0 & -1 \\\hline \text{Scissors}\quad & -1 & 1 & 0 \\\hline \end{array} & \end{array}Here in the table, 00 denotes a draw, 11 denotes a victory of the first player and 1-1 denotes a victory of the second player. If the entries of that table form a 3×33 \times 3 matrix

A=[aij]withi=1,2,3andj=1,2,3,A = \begin{bmatrix} a_{ij} & \cdots \\ \vdots & \ddots \end{bmatrix} \text{with} \quad i =1,2,3\quad \text{and} \quad j=1,2,3,then which of the outcomes of a rock-paper-scissors game corresponds to the entry a23a_{23}?

Tip: Do you remember the correct order of an element's indices in a matrix?

Select one option from the list
___

Create a free account to access the full topic