5 minutes read

We know that integration is the inverse operation to differentiation. Furthermore, we know we can use the Fundamental Theorem of Calculus to find the exact value of a definite integral, by evaluating the antiderivative of the integrand function at the limits of integration. However, we still need to learn how to determine these antiderivatives. In this topic, we'll get acquainted with the rules to determine the antiderivative of a few simple but very common functions.

Integral of a constant

We know that integration is a linear operation. Therefore, just like with derivatives, we can take the constant factor out of the integral:

kf(x)dx=kf(x)dx\int \text{k} \cdot f(x) dx = \text{k} \int f(x) dxWe also know that the antiderivative of f(x)=1f(x)=1 is x+Cx + C, since

ddxF(x)=1withF(x)=x+C\frac{d}{dx}F(x) = 1 \quad \text{with} \quad F(x) = x + CThen,

kdx=k1dx=(x+C)=kx+kC=kx+C;C=kC\int \text{k} dx = \text{k} \int 1 dx = \text{k} \ (x+C) = \text{k}x + kC = \text{k}x + C' \quad ; \quad C' = kCSince CC is an arbitrary constant, CC' would be just another arbitrary constant. Because of this, it is not unusual to find this rule as:

kdx=kx+C\int \text{k} dx = \text{k}x + CFor example,

2dx=2dx=2x+C5dx=5dx=5x+C\begin{align*} &\int 2 dx = 2 \cdot \int dx = 2x + C \\ \\ &\int -5 dx = -5 \cdot \int dx = -5x + C \end{align*}

Integral of a power

In order to determine the integral, let's recall what the derivative of a power function looks like:

ddx(xm)=mxm1\frac{d}{dx}(x^m) = m \cdot x^{m-1}Now, let's define: n=m1n=m-1

ddx(xn+1)=(n+1)xn\frac{d}{dx}(x^{n+1}) = (n+1) \cdot x^n Solving for xnx^n

xn=ddx(xn+1)(n+1)x^n =\frac{\frac{d}{dx}(x^{n+1})}{(n+1)}Integrating both sides,

xndx=ddx(xn+1)(n+1)dx=1n+1ddx(xn+1)dx\int x^n dx = \int \frac{\frac{d}{dx}(x^{n+1})}{(n+1)} dx = \frac{1}{n+1} \int \frac{d}{dx}(x^{n+1}) dxInverse operations cancel out (but we still need our constant of integration since we are computing a general antiderivative!

1n+1ddx(xn+1)dx=1n+1xn+1+C\frac{1}{n+1} \int \frac{d}{dx}(x^{n+1}) dx = \frac{1}{n+1} \cdot x^{n+1} + CThen,

kxndx=kxn+1n+1+C; n1\int \text{k}\cdot x^n dx = \text{k} \cdot \frac{x^{n+1}}{n+1} + C \quad ; \ n \neq -1As you can see, the antiderivative becomes undefined when n=1n=-1

For example,

x2dx=x2+12+1+C=x33+Cx5dx=x5+15+1+C=x44+Cx1/2dx=x12+112+1+C=23x3/2+C\begin{align*} &\int x^2 dx = \frac{x^{2+1}}{2 + 1} + C = \frac{x^3}{3} + C \\ \\ &\int x^{-5} dx = \frac{x^{-5+1}}{-5 + 1} + C = -\frac{x^{-4}}{4} + C \\ \\ &\int x^{1/2} dx = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2} + 1} + C = \frac{2}{3} x^{3/2} + C \end{align*}

Integral of a polynomial

We can bring together the rules we have so far to figure out the indefinite integral of a polynomial of the form:

p(x)=anxn+an1xn1++a2x2+a1x+a0p(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \cdots + a_2 \cdot x^2 + a_1 \cdot x + a_0where aia_i is a constant coefficient for each term.

Since integration is a linear operation, the integral of a sum is the sum of the integrals of each summand:

f(x)+g(x)dx=f(x)dx+g(x)dx\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dxThen,

p(x)dx=anxn+an1xn1++a2x2+a1x+a0 dx=anxn dx+an1xn1 dx++a2x2 dx+a1x dx+a0 dxp(x)dx=anxn+1n+1+an1xnn++a2x33+a1x22+a0x+C\begin{align*} \int p(x) dx &= \int a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \cdots + a_2 \cdot x^2 + a_1 \cdot x + a_0 \ dx \\ &= \int a_n \cdot x^n \ dx + \int a_{n-1} \cdot x^{n-1} \ dx + \cdots + \int a_2 \cdot x^2 \ dx + \int a_1 \cdot x \ dx + \int a_0 \ dx \\ \int p(x) dx &= a_n \cdot \frac{x^{n+1}}{n+1} + a_{n-1} \cdot \frac{x^n}{n} + \cdots + a_2 \cdot \frac{x^3}{3} + a_1 \cdot \frac{x^2}{2} + a_0 \cdot x + C \\ \end{align*}For example,

(5x2+x2)dx=5x2dx+xdx+(2)dx=5x2dx+xdx2dx=5x33+x222x+C=16(10x3+3x212x)+C\begin{align*} \int (5x^2 + x -2) dx &= \int 5x^2 dx + \int x dx + \int (-2) dx \\ & = 5\int x^2 dx + \int x dx -2 \int dx \\ & = \frac{5x^3}{3} + \frac{x^2}{2}-2x+ C = \frac{1}{6} (10x^3+3x^2-12x) + C \end{align*}

Integral of reciprocal of x

As stated above, the antiderivative of a power function kxn\text{k} \cdot x^n becomes undefined for n=1n=-1. So, what do we do in this case? Fear not, f(x)=1xf(x)=\frac{1}{x} has an antiderivative of its own!

We already know that

ddxln(x)=1x\frac{d}{dx}\ln(x) = \frac{1}{x}Then,

1xdx=ln(x)+C\int \frac{1}{x}dx=\ln(x) + CHowever, this does not work for x0x \leq 0 , which is why we define this antiderivative as

1xdx=lnx+C\int \frac{1}{x}dx=\ln|x| + CSince

ddxlnx=1x\frac{d}{dx}\ln|x| = \frac{1}{x}as well!

Conclusion

In this topic, we've learned the rules to determine antiderivatives for commonly used functions such as:

  • Constant functions: f(x)=k    f(x)dx=kx+Cf(x)=k \implies \int f(x) dx = \text{k}x + C
  • Power functions: f(x)=kxn    f(x)dx={kxn+1n+1+C; n1ln(x)+C; n=1f(x)=k \cdot x^n \implies \int f(x) dx = \begin{cases} \text{k} \cdot \frac{x^{n+1}}{n+1} + C \quad &; \ n \neq -1 \\ \ln(x) + C \quad & ; \ n = -1 \end{cases}
  • Polynomials: f(x)=anxn++a1x+a0    f(x)dx=anxn+1n+1+an1xnn++a2x33+a1x22+a0x+Cf(x) = a_n \cdot x^n + \cdots +a_1 \cdot x + a_0 \implies \int f(x) dx = a_n \cdot \frac{x^{n+1}}{n+1} + a_{n-1} \cdot \frac{x^n}{n} + \cdots + a_2 \cdot \frac{x^3}{3} + a_1 \cdot \frac{x^2}{2} + a_0 \cdot x + C
13 learners liked this piece of theory. 1 didn't like it. What about you?
Report a typo