Computer scienceData scienceInstrumentsPandasStoring data with pandas

.loc & .iloc

Girl power

Report a typo

Suppose, you have the full penguins dataset:

penguins_df.head()

Output:

+----+-----------+-----------+------------------+-----------------+---------------------+---------------+--------+
|    | species   | island    |   bill_length_mm |   bill_depth_mm |   flipper_length_mm |   body_mass_g | sex    |
|----+-----------+-----------+------------------+-----------------+---------------------+---------------+--------|
|  0 | Adelie    | Torgersen |             39.1 |            18.7 |                 181 |          3750 | MALE   |
|  1 | Adelie    | Torgersen |             39.5 |            17.4 |                 186 |          3800 | FEMALE |
|  2 | Adelie    | Torgersen |             40.3 |            18   |                 195 |          3250 | FEMALE |
|  3 | Adelie    | Torgersen |            nan   |           nan   |                 nan |           nan | nan    |
|  4 | Adelie    | Torgersen |             36.7 |            19.3 |                 193 |          3450 | FEMALE |
+----+-----------+-----------+------------------+-----------------+---------------------+---------------+--------+

You would like to make a brief report about female penguins. However, you'd like to base your analysis only on the columns 'species', 'island', and 'sex' . Select all rows that contain female penguins and the columns 'species', 'island', 'sex' , then print the resulting DataFrame.
Tip: It's easier to use .loc here. Take a look at this code snippet from the theory to solve the task:

df.loc[df.birthday == '12.05.1979', 'last_name':'birthday':2]

Output:

+----+-------------+------------+
|    | last_name   | birthday   |
|----+-------------+------------|
|  3 | Doe         | 12.05.1979 |
+----+-------------+------------+

Write a program in Python 3
# put your code here. The data frame is already loaded and stored as penguins_df.

print()
___

Create a free account to access the full topic