Look at a part of the "Rain in Australia" dataset a_rains:
a_rains.head()
Output:
+----+------------+------------+-----------+-----------+------------+---------------+-----------------+-------------+
| | Date | Location | MinTemp | MaxTemp | Rainfall | WindGustDir | WindGustSpeed | RainToday |
|----+------------+------------+-----------+-----------+------------+---------------+-----------------+-------------|
| 0 | 2017-06-04 | Perth | 12.1 | 22.2 | 0 | SSE | 22 | No |
| 1 | 2017-06-10 | Sydney | 12.5 | 18.1 | 38.8 | SSE | 50 | Yes |
| 2 | 2017-06-06 | Canberra | -3.2 | 12.8 | 0.2 | SSE | 56 | No |
| 3 | 2017-06-09 | Melbourne | 6.6 | 15 | 1.8 | S | 22 | Yes |
| 4 | 2017-06-03 | Canberra | -4.2 | 15.4 | 0 | W | 19 | No |
+----+------------+------------+-----------+-----------+------------+---------------+-----------------+-------------+
Then look at this fancy selection:
a_rains[(((a_rains.Location == 'Perth') & (a_rains.RainToday == 'No'))
| ((a_rains.Location == 'Sydney') & (a_rains.RainToday == 'Yes')))
& ~((a_rains.MaxTemp > 10) & (a_rains.Rainfall >= .3))]
Please, select all rows except that selection and print the result. Note that the data frame is already loaded as a_rains.