Which of the following statements is correct for an arbitrary AAA?
P(A)<P(A∣A)<P(A∩A)\mathbb{P}(A) < \mathbb{P}(A | A) < \mathbb{P}(A \cap A)P(A)<P(A∣A)<P(A∩A)
P(A)>P(A∣A)>P(A∩A)\mathbb{P}(A) > \mathbb{P}(A | A) > \mathbb{P}(A \cap A)P(A)>P(A∣A)>P(A∩A)
P(A)=P(A∩A)\mathbb{P} (A) = \mathbb{P}(A \cap A)P(A)=P(A∩A) and P(A)≤P(A∣A)\mathbb{P}(A) \leq \mathbb{P}(A | A)P(A)≤P(A∣A)
P(A)=P(A∩A)\mathbb{P}(A) =\mathbb{P}(A \cap A)P(A)=P(A∩A) and P(A∣A)=P(A)\mathbb{P}(A | A) = \mathbb{P}(A)P(A∣A)=P(A)
Create a free account to access the full topic