Take a look at the wine dataset:
df.head()
Output:
+----+--------------------+-----------+----------+
| | variety | country | points |
|----+--------------------+-----------+----------|
| 0 | Pinot Noir | US | 87 |
| 1 | Cabernet Sauvignon | US | 87 |
| 2 | Red Blend | US | 87 |
| 3 | White Blend Italy | Italy | 87 |
| 4 | Merlot | US | 87 |
+----+--------------------+-----------+----------+
Which answer/answers will pivot that table to make it look like this:
+--------------------------+--------------+-------------+----------+----------+--------------+---------------+----------+
| country | Argentina | Australia | Canada | France | Italy | Spain | US |
| variety | | | | | | | |
|--------------------------+--------------+-------------+----------+----------+--------------+---------------+----------|
| Bordeaux-style Red Blend | 89.7468 | 89.25 | 90.4667 | 87.7738 | 89.5 | 87.1667 | 89.7903 |
| Cabemet Sauvignon | 86.445 | 89.8065 | 88 | 86.4 | 89.2759 | 87.4048 | 89.6784 |
| Chardonnay | 85.1765 | 88.1019 | 88.8571 | 89.913 | 88.5364 | 85.2703 | 89.5169 |
| Merlot | 85.1471 | 86.8571 | 88 | 86.5821 | 89.1489 | 8.44545e+07 | 88.1451 |
| PinotNoir | 86.1176 | 87.2917 | 89.0714 | 89.8983 | 86 | 87 | 90.4293 |
| Red Blend | 88.3971 | 87.85 | 90.6 | 88.2615 | 88.8748 | 988.184 | 988.457 |
| Rosé | 8.41667e+07 | 86.7778 | 86.5 | 87.4161 | 87.25 | 8.45566e+07 | 87.6824 |
| Sauvignon Blanc | 84.6346 | 86.7368 | 88.75 | 88.9302 | 9.87611e+08 | 8.44375e+07 | 88.4619 |
| Syrah | 86.1087 | 91.7333 | 91 | 90.4727 | 88.8367 | 88.2963 | 90.4172 |
| White Blend | 84.7667 | 86.3333 | 87.8 | 87.4192 | 88.2441 | 86.2076 | 87.9098 |
+--------------------------+--------------+-------------+----------+----------+--------------+---------------+----------+
Points are aggregated with mean function.