2 minutes read

You already know how to take a derivative of polynomial. In this topic, you will learn about a derivative of a trigonometric function: sine, cosine, tangent and cotangent.

Formulas of derivatives of important trigonometric functions

As you remember, a derivative of a function f(x)f(x) could be found with the following formula:

f(x)=limx0f(x+x)f(x)xf'(x) = \lim\limits_{\triangle x \to 0} \dfrac{f(x + \triangle x) - f(x)}{\triangle x}Let's find a derivative of sine of xx. Using our formula,

(sinx)=limx0sin(x+x)sinxx(\sin x)' = \lim\limits_{\triangle x\to 0} \dfrac{\sin(x + \triangle x) - \sin x}{\triangle x}Given the trigonometric identitysinαsinβ=2sinαβ2cosα+β2\sin \alpha - \sin \beta = 2 \sin \dfrac{\alpha - \beta}{2}\cos \dfrac{\alpha + \beta}{2}

and the first remarkable limit, we get:

(sinx)=limx02sinx2cos(x+x2)x=cosx(\sin x)' = \lim\limits_{\triangle x\to 0} \dfrac{2\sin\dfrac{\triangle x}{2}\cos \left( x + \dfrac{\triangle x}{2}\right)}{\triangle x} = \cos xSo, a derivative of sinx\sin x is equal to cosx\cos x.

Similarly, we can get that

(cosx)=sinx(\cos x)' = -\sin xWith this in mind, we derive a formula for the derivative of tangent using the quotient rule:

(tanx)=(sinxcosx)=(sinx)cosxsinx(cosx)cos2x= =cosxcosxsinx(sinx)cos2x=cos2x+sin2xcos2x=1cos2x(\tan x)' = \left( \dfrac{\sin x}{\cos x}\right)' = \dfrac{(\sin x)' \cdot \cos x - \sin x \cdot (\cos x)'}{\cos^2 x} = \\ \ \\ =\dfrac{\cos x \cdot \cos x - \sin x\cdot (-\sin x)}{\cos^2x} = \dfrac{\cos^2x + \sin^2x}{\cos^2 x} = \dfrac{1}{\cos^2 x}So, the derivative of tangent of xx is equal to 1cos2x\dfrac{1}{\cos^2 x}.

Similarly, you can derive the formula for the cotangent of xx:

(cotx)=1sin2x(\cot x)' = - \dfrac{1}{\sin^2 x}

Examples

Let's find a derivative of f(x)=tanx+cosxf(x) = \tan x + \cos x. Using the sum rule, we get:

f(x)=(tanx+cosx)=(tanx)+(cosx)=1cos2xsinxf'(x) = (\tan x + \cos x)' = (\tan x)' + (\cos x)' = \dfrac{1}{\cos^2 x} - \sin xConsider an another example. Let's find a derivative of f(x)=xtanxf(x) = \dfrac{x}{\tan x}. Using the quotient rule, we get:

f(x)=(xtanx)=x tanxx(tanx)tan2x=tanxxcos2xtan2x= =1tanxxcos2xtan2x=1tanxxsin2xf'(x) = \left(\dfrac{x}{\tan x}\right)' = \dfrac{x'\ \cdot \tan x - x \cdot (\tan x)'}{\tan^ 2x} = \dfrac{\tan x - \dfrac{x}{\cos^2 x}}{\tan^2 x} = \\ \ \\ = \dfrac{1}{\tan x} - \dfrac{x}{\cos^2 x \cdot \tan^2 x} = \dfrac{1}{\tan x} - \dfrac{x}{\sin^2 x}

Conclusion

In this topic, you have learned about derivatives of important trigonometric functions:

(sinx)=cosx(\sin x)'=\cos x

(cosx)=sinx(\cos x)'=-\sin x

(tanx)=1cos2x(\tan x)' = \dfrac{1}{\cos^2 x}

(cotx)=1sin2x(\cot x)' = - \dfrac{1}{\sin^2 x}

18 learners liked this piece of theory. 1 didn't like it. What about you?
Report a typo