Suppose g(x)={5x⩾2−8x<2.g(x) = \begin{cases} 5 \quad& x \geqslant 2 \\ -8 \quad & x < 2.\end{cases}g(x)={5−8x⩾2x<2.
What is a limit limx→2+g(x)\lim\limits_{x\to 2+} g(x)x→2+limg(x) equal to?
Create a free account to access the full topic