4 minutes read

We know that when we consider such limits as limxaf(x)g(x)\lim\limits_{x \to a} \dfrac{f(x)}{g(x)}, we can get the 00\dfrac{0}{0} or \dfrac{\infty}{\infty} indeterminate forms and can't interpret this result. Fortunately, there is a rule we can apply in such cases: it is called the L'Hospital's rule.

What is the L'Hospital's rule?

Suppose we need to find limxaf(x)g(x)\lim\limits_{x \to a} \dfrac{f(x)}{g(x)}. If both functions f(x)f(x) and g(x)g(x) are differentiable and both of them approach 00 as xax\to a:

limxaf(x)=0  limxag(x)=0\lim\limits_{x \to a}f(x) = 0 \ \ \lim\limits_{x \to a}g(x) = 0our limit can be evaluated if we take the derivative of each function:

limxaf(x)g(x)=limxaf(x)g(x)\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a} \dfrac{f'(x)}{g'(x)}Consider the example:

limx0sinxx\lim\limits_{x \to 0} \dfrac{\sin x}{x}Since sinx0\sin x \to 0 when x0x \to 0, then we have the 00\dfrac{0}{0} indeterminate form and we can apply the L'Hospital's rule:

limx0sinxx=limx0(sinx)x=limx0cosx1=limx0cosx=1\lim\limits_{x \to 0} \dfrac{\sin x}{x} = \lim\limits_{x \to 0} \dfrac{(\sin x)'}{x'} = \lim\limits_{x \to 0} \dfrac{\cos x}{1} = \lim\limits_{x \to 0}\cos x = 1In addition to the 00\dfrac{0}{0} indeterminate form, the L'Hospital's rule is applicable even in case of the \dfrac{\infty}{\infty} indeterminate form. Suppose we need to find the limit

limx3exx2\lim\limits_{x \to \infty} \dfrac{3e^x}{x^2}This limit gives us the \dfrac{\infty}{\infty} indeterminate form, because if xx \to \infty, then 3ex3e^x \to \infty and x2x^2 \to \infty. Let's use the L'Hospital's rule:

limx3exx2=limx(3ex)(x2)=limx3ex2x\lim\limits_{x \to \infty} \dfrac{3e^x}{x^2} = \lim\limits_{x \to \infty} \dfrac{(3e^x)'}{(x^2)'} = \lim\limits_{x \to \infty} \dfrac{3e^x}{2x}Now we still have the \dfrac{\infty}{\infty} indeterminate form, so let's take the derivative again. If the limit of the quotient is the same as the limit of the quotient of the derivatives, then our rule will work, no matter how many times we take the derivative.

limx(3ex)(2x)=limx3ex2=32limxex=\lim\limits_{x \to \infty} \dfrac{(3e^x)'}{(2x)'} = \lim\limits_{x \to \infty} \dfrac{3e^x}{2} = \dfrac{3}{2} \lim\limits_{x \to \infty} e^x = \inftySo, limx3exx2=\lim\limits_{x \to \infty} \dfrac{3e^x}{x^2} = \inftyNotice, that the L'Hospital's rule only applies to limits of 00\dfrac{0}{0} or \dfrac{\infty}{\infty} indeterminate forms.

Notice, that the L'Hospital's rule requires the existence of the limit limxaf(x)g(x)\lim\limits_{x \to a} \dfrac{f'(x)}{g'(x)}

Another form of the L'Hospital's rule

Consider the limit

limxaf(x)g(x)\lim\limits_{x \to a} f(x) \cdot g(x)where limxaf(x)=0\lim\limits_{x \to a} f(x) = 0 and limxag(x)=\lim\limits_{x \to a} g(x) = \infty, so we have the 00 \cdot \infty indeterminate form. We can't directly determine what is going on here. But we can rewrite our limit in another way:

limxaf(x)g(x)=limxaf(x)1g(x)\lim\limits_{x \to a}f(x) \cdot g(x) = \lim\limits_{x \to a} \dfrac{f(x)}{\frac{1}{g(x)}}or

limxaf(x)g(x)=limxag(x)1f(x)\lim\limits_{x \to a}f(x) \cdot g(x) = \lim\limits_{x \to a} \dfrac{g(x)}{\frac{1}{f(x)}}

We got 00\dfrac{0}{0} or \dfrac{\infty}{\infty} indeterminate forms and now we can apply the L'Hospital's rule!

For example:

limx0+(x2lnx)\lim\limits_{x \to 0+} (x^2 \cdot \ln x)Here we have the 0()0 \cdot (-\infty) indeterminate form, because

limx0+x2=0\lim\limits_{x \to 0+} x^2 = 0

and

limx0+lnx=\lim \limits_{x \to 0+} \ln x = -\infty

Let's rewrite the product x2lnxx^2 \cdot \ln x as lnx1x2\dfrac{\ln x}{\frac{1}{x^2}}and apply L'Hospital's rule:

limx0+(x2lnx)=limx0+lnx1x2=limx0+(lnx)(1x2)= =limx0+1x2x3=limx0+x22=0\lim\limits_{x \to 0+} (x^2 \cdot \ln x) = \lim\limits_{x \to 0+} \dfrac{\ln x}{\frac{1}{x^2}} = \lim\limits_{x \to 0+} \dfrac{(\ln x)'}{(\frac{1}{x^2})'} = \\ \ \\ = \lim\limits_{x \to 0+} \dfrac{\frac{1}{x}}{\frac{-2}{x^3}} = - \lim\limits_{x \to 0+} \dfrac{x^2}{2} = 0

What about indeterminate powers?

Suppose we have limxaf(x)g(x)\lim\limits_{x \to a} f(x)^{g(x)}and this is a 000^0, 0\infty^0 or 11^\infty indeterminate form. In such cases we can set the expression f(x)g(x)f(x)^{g(x)} to yy and take the natural logarithm of both sides:

y=f(x)g(x)lny=lnf(x)g(x)lny=g(x)lnf(x)y=eg(x)lnf(x)y = f(x)^{g(x)} \\ \ln y = \ln f(x)^{g(x)} \\ \ln y = g(x) \cdot \ln f(x) \\ y = e^{g(x) \cdot \ln f(x)}So,

limxaf(x)g(x)=limxaeg(x)lnf(x)\lim\limits_{x \to a} f(x)^{g(x)} = \lim\limits_{x \to a} e^{g(x) \cdot \ln f(x)}Now we may be able to evaluate our limit.

Consider the example:

limx0+xx\lim\limits_{x \to 0+} x^x

We convert this expression:

y=xxlny=lnxxlny=xlnxy=exlnxy = x^x \\ \ln y = \ln x^x \\ \ln y = x \cdot \ln x \\ y = e^{x \cdot \ln x}Then

limx0+xx=limx0+exlnx\lim\limits_{x \to 0+} x^x = \lim\limits_{x \to 0+} e^{x \cdot \ln x}Using the method described in the previous section, we obtain

limx0+xlnx=0\lim\limits_{x \to 0+} x \cdot \ln x = 0

So,

limx0+xx=limx0+exlnx=limx0+e0=1\lim\limits_{x \to 0+} x^x = \lim\limits_{x \to 0+} e^{x \cdot \ln x} = \lim\limits_{x \to 0+} e^0 = 1

Conclusion

In this topic, we have learned about the L'Hospital's rule. When we want to use this rule, we must remember that the L'Hospital's rule only applies to limits with 00\dfrac{0}{0} or \dfrac{\infty}{\infty} indeterminate forms. This should always be checked, otherwise you may get the wrong answer.

9 learners liked this piece of theory. 1 didn't like it. What about you?
Report a typo